首页> 外文OA文献 >Insights into Function, Catalytic Mechanism, and Fold Evolution of Selenoprotein Methionine Sulfoxide Reductase B1 through Structural Analysis*
【2h】

Insights into Function, Catalytic Mechanism, and Fold Evolution of Selenoprotein Methionine Sulfoxide Reductase B1 through Structural Analysis*

机译:通过结构分析深入了解硒蛋白蛋氨酸亚砜还原酶B1的功能,催化机理和折叠演变*

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Methionine sulfoxide reductases protect cells by repairing oxidatively damaged methionine residues in proteins. Here, we report the first three-dimensional structure of the mammalian selenoprotein methionine sulfoxide reductase B1 (MsrB1), determined by high resolution NMR spectroscopy. Heteronuclear multidimensional spectra yielded NMR spectral assignments for the reduced form of MsrB1 in which catalytic selenocysteine (Sec) was replaced with cysteine (Cys). MsrB1 consists of a central structured core of two β-sheets and a highly flexible, disordered N-terminal region. Analysis of pH dependence of NMR signals of catalytically relevant residues, comparison with the data for bacterial MsrBs, and NMR-based structural analysis of methionine sulfoxide (substrate) and methionine sulfone (inhibitor) binding to MsrB1 at the atomic level reveal a mechanism involving catalytic Sec95 and resolving Cys4 residues in catalysis. The MsrB1 structure differs from the structures of Cys-containing MsrBs in the use of distal selenenylsulfide, residues needed for catalysis, and the mode in which the active form of the enzyme is regenerated. In addition, this is the first structure of a eukaryotic zinc-containing MsrB, which highlights the structural role of this metal ion bound to four conserved Cys. We integrated this information into a structural model of evolution of MsrB superfamily.
机译:蛋氨酸亚砜还原酶通过修复蛋白质中氧化受损的蛋氨酸残基来保护细胞。在这里,我们报告哺乳动物的硒蛋白蛋氨酸亚砜还原酶B1(MsrB1)的第一个三维结构,通过高分辨率NMR光谱测定。异核多维光谱产生了MsrB1还原形式的NMR光谱分配,其中催化硒代半胱氨酸(Sec)被半胱氨酸(Cys)取代。 MsrB1由两个β-折叠的中央结构核心和一个高度灵活的无序N端区域组成。分析催化相关残基的NMR信号的pH依赖性,与细菌MsrBs的数据进行比较以及基于NMR的蛋氨酸亚砜(底物)和蛋氨酸砜(抑制剂)在原子水平上与MsrB1结合的基于NMR的结构分析揭示了一种涉及催化作用的机理Sec95并在催化中解析Cys4残基。 MsrB1结构与含Cys的MsrBs结构的不同之处在于远端硒烯基硫的使用,催化所需的残基以及酶活性形式的再生方式。此外,这是含真核生物的含锌MsrB的第一个结构,突出了该金属离子与四个保守Cys结合的结构作用。我们将此信息集成到MsrB超家族进化的结构模型中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号